<source id="tk7cj"></source>

    <ins id="tk7cj"></ins><track id="tk7cj"></track>

    1. <i id="tk7cj"></i><b id="tk7cj"></b>
      1. <acronym id="tk7cj"></acronym>

            電池百科

            公司新聞行業資訊電池百科常見問題
            首頁新聞資訊電池百科

            鋰離子電池熱穩定性與過充、高溫及短路安全性分析總結!

            來源:藍泰陽作者:admin瀏覽次數:1005發布時間:2022-04-21 20:45:53

            近年來關于鋰離子電池引發火災甚至爆炸事故的報道屢見不鮮。鋰離子電池主要由負極材料、電解液和正極材料組成。負極材料石墨在充電態時化學活性接近金屬鋰,在高溫下表面的SEI膜分解,嵌入石墨的鋰離子與電解液、黏結劑聚偏二氟乙烯會發生反應放出大量熱。
             
            電解液普遍采用烷基碳酸酯有機溶液,該材料具有易燃特性。而正極材料通常為過渡金屬氧化物,在充電態時具有較強的氧化性,在高溫下易分解釋放出氧,釋放出的氧與電解液發生氧化反應,繼而釋放出大量的熱
            因此,從材料的角度出發,鋰離子電池具有較強的危險性,特別是在濫用的情況下,安全問題更為突出。
             
            一、鋰離子電池材料熱穩定性分析
             
            鋰離子電池的火災危險性主要由電池內部各部分發生化學反應產熱量多少決定。鋰離子電池的火災危險性歸根結底取決于電池材料的熱穩定性,而電池材料的熱穩定性又取決于其內部各部分之間發生的化學反應。目前,人們主要借助于差示掃描量熱儀(DSC)、熱重分析儀(TGA)、絕熱加速量熱儀(ARC)等來研究電池相關材料的熱穩定性。
             
            1 負極材料熱穩定性的影響因素 :
            負極材料放熱的起始溫度隨顆粒尺寸的增加而增加。
            用DSC對不同顆粒尺寸的嵌鋰天然石墨的熱穩定性進行了研究。結果發現,所有樣品都出現了3個放熱峰。樣品的第一個放熱峰位于150℃附近,而后兩個放熱峰出現的位置明顯不同,后兩個放熱峰的起始溫度隨顆粒尺寸的增加而升高。該研究表明,第一個放熱峰為SEI膜的分解,后兩個放熱峰為嵌鋰石墨與PVDF和電解液的反應。
             
            用ARC研究了石墨材料的比表面積與熱穩定性的關系,發現當石墨材料的比表面積從0.4平方米/克增加到9.2平方米/克時,反應速率增加了兩個數量級。因此,碳負極材料的反應速率隨比表面積的增大而增大。
             
            不同結構碳材料反應的產熱量不同,石墨結構比無定形碳結構產熱量多。
            用DSC對碳纖維、硬碳、軟碳和MCMB四種不同結構碳材料的熱穩定性進行了研究。研究發現,四種碳的第一個放熱峰均出現在100℃,此放熱峰被認為是由SEI膜分解產生;隨著溫度升高到230℃,碳結構與比表面積對材料熱穩定性的影響逐漸顯現,石墨結構的碳電極材料(碳纖維、MCMB)比無定形結構的碳電極材料 (軟碳、硬碳)產生的熱量更多。XRD顯示在230℃左右,嵌鋰量的損失總量與碳比表面積成線性關系。
             
            2 正極材料熱穩定性的影響因素:
            正極材料與電解液反應的起始溫度隨化學計量數的減小而升高。
            用DSC研究了x的變化對正極材料LixCoO2、LixNiO2、LixMn2O4和LixC6與電解液的反應的影響。通過研究得出結論:電解液和正極材料之間普遍存在放熱反應,當x值減小時,反應溫度升至200~230℃范圍內,LixCoO2、LixNiO2、LixMn2O4材料都與電解液發生強烈的反應 。
             
            用ARC研究了LixCoO2的熱穩定性。在臨界溫度以上,LixCoO2發生釋氧反應,并且釋放出大量的熱。當x=0.25時,放熱反應起始溫度大概為230℃。李毅等在耐熱試驗中測得18650型LiCoO2的自然反應溫度為170℃,表明發生分解反應的起始溫度更低。因此可知,正極材料分解反應的始溫度隨x的減小而升高。
             
            正極材料中Ni的含量越高越不穩定,Mn的含量越高越穩定。
            用DSC研究了Li1-xNi1-2xCoxMnxO2不同組分材料的熱穩定性,結果發現:隨著Ni含量的降低,Li1-xNi1-2xCoxMnxO2的放熱起始溫度與峰值溫度更高,產熱量更少。Maeneil等研究了幾種正極材料與1mol LiPF6 EC/DEC反應的放熱量。
             
            3 電解液熱穩定性的影響因素:
            有機溶劑DMC是造成電解液不穩定的重要因素,而且DMC含量越高,電解液越不穩定。
            用DSC對溶解了1mol/L LiPF6的EC+DEC、EC+DMC、PC+DEC和PC+DMC混合溶劑的電解液在密閉容器中進行了研究,發現含DMC的電解液比含DEC的電解液更易發生反應 。
             
            電解液可使正極在更低的溫度下發生反應,而且電解液中不同的溶劑和鋰鹽適合不同的正極材料。
            用ARC和XRD方法分別對Li0.5CoO2、LiMn2O4充電正極與電解液之間的放熱反應進行了研究。研究表明,對于Li0.5CoO2粉末在溫度大于200℃時發生分解反應 ,析出氧氣,而和EC/DEC溶劑的放熱反應出現在130℃,溶劑中加入LiPF6后,反應得到抑制。對于LiMn2O4材料,在160℃發生晶型轉變而放熱,溶劑存在對此反應沒有影響。在電解液中加入LiPF6后,隨著LiPF6濃度的增加,LiMn2O4與電解液之間的反應加劇 。
             
            二、鋰離子電池濫用的安全性分析
             
            鋰離子電池的安全性主要取決于電池材料的熱穩定性,并且也與電池過充、針刺、擠壓和高溫等濫用條件密切相關 。
             
            1 過充安全性分析:
            過充試驗是模擬當充電器電壓檢測出現錯誤,充電器出現故障或用錯充電器時電池可能出現的安全隱患。
            由過充引起的熱失控可能來自兩個方面:一方面是電流產生的焦耳熱,另一方面是正負極發生的副反應產生的反應熱。電池過充時,負極電壓逐漸升高,當負極的脫鋰量過大時,脫鋰過程也越來越困難,這導致電池的內阻急劇增大,因此產生大量的焦耳熱,這在大倍率充電時更為明顯。過充狀態的高電壓正極氧化劑放出大量的熱,溫度升高后負極也會與電解液發生放熱反應。當放熱速率大于電池的散熱速率,溫度上升到一定程度時,便會發生熱失控 。
             
            Tobishim等比較研究了分別以LiCoO2和LiMn2O4為正極材料的鋁殼方形電池的過充性能,研究結果表明,LiCoO2電芯以電流為2C充電至電壓10V時會發生爆炸,而LiMn2O4電芯分別以2C/10V、3C/10V過充時均未冒煙、起火或爆炸,僅僅發生鼓脹,這說明Mn比Co具有更好的耐過充性能。Leising等研究了不同石墨配比量對LiCoO2電芯過充性能的影響,結果表明,電芯的過充性能主要取決于正極材料,不隨石墨量的增加而發生變化。這說明過充過程中金屬鋰在負極的析出并不是影響過充性能的關鍵,而是過度脫鋰的LiCoO2的熱穩定性或電解液在其表面的氧化反應。
             
            2 高溫安全性分析 :
            模擬環境高溫試驗可以采用熱箱試驗進行。熱箱試驗是模擬電池使用不當處于高溫下的情況,比如將手機放置在暴曬的汽車里,或者將手機或電子產品放入微波爐里,溫度可達130℃甚至到150℃。處于熱濫用時,熱源除了來源于電池內部正負極材料及其與電解液的反應以外,隔離膜在高溫下熔化收縮導致正負極短路,短路產生的焦耳熱也是熱箱試驗時的重要熱源。
             
            溫度介于90~120℃時,多次充放電在碳負極表面形成的固態電解質界面膜(SEI)的亞穩定層首先發生分解放熱;隨著溫度的升高,隔膜吸熱先后熔化;當溫度在180~500℃,正極與電解質發生強放熱反應并產生氣體;SEI膜能阻止嵌鋰碳與有機電解液的相互作用,當溫度高于120℃時,SEI膜出現破裂便不能保護負極,負極材料可能開始與溶劑發生放熱反應并產生氣體,當溫度升到240~350℃,含氟黏結劑開始與嵌鋰碳發生劇烈的鏈增長反應,放出大量熱量,負極與電解液的反應可能會耗盡鋰,則此反應不會發生;若溫度繼續升高到660℃ ,Al集流體將發生吸熱熔化。這些情況對于大型鋰離子動力電池非常危險,影響電池的壽命及安全。
             
            3 短路安全性分析:
            電池的短路分為外部短路和內部短路。外部短路一般指的是正負極直接接觸造成的短路;內部短路指的是當電池受到尖銳物體穿刺或者受到碰撞、擠壓時,造成電池內部受到外物作用區域的短路。
             
            外部短路安全性分析
            外部短路安全性研究是通過導線將正負極在外部直接連接的方法來測試。李毅等進行了電池外部短路的研究,他們將研究對象鈷酸鋰18650型鋰離子電池、6芯筆記本電池 (6只18650型電池,3只串聯為1組,2組并聯,去除保護電路)正負極用導線短路,將熱電偶貼在電池的表面來檢測電池表面溫度變化。用無紙記錄儀記錄電池表面的溫度曲線。
             
             
            內部短路安全性分析
            電池內部短路的安全性研究一般采用針刺、擠壓等方法來測試,目的是模擬電池被外物穿刺、碰撞、擠壓等情況。針刺造成電池在針刺點短路,短路區由于大量的焦耳熱而形成局部熱區,當熱區溫度超過臨界點時將引發熱失控,發生冒煙、起火甚至爆炸的危險。擠壓與針刺類似,都是造成局部內短路而可能引起熱失控。不同的是,擠壓 不一定會造成電池殼體的破壞,殼體沒有破壞就意味著易燃的電解液不會從熱區處泄漏,熱區處向外散熱效果較差一些 。
             
            通過擠壓與針刺等引起電池局部內短路的測試往往比通過電池外短路測試要難得多,這是因為電池外部短路時電池內部往往是均勻放熱,外部短路電池所產生的焦耳熱不 會直接觸發電池的熱失控反應。
             
            針刺和擠壓等測試條件對測試結果影響較大, 這是因為不同條件下的針刺和擠壓測試所導致的內部短路情況不同,內部短路電阻的大小對短路區產熱功率有較大的影響。
            電池內部短路的形式有4種:
            (1)Al集流體與負極材料 (LiC6、C6)之間;
            (2)Al集流體與Cu集流體之間;
            (3)正極材料與LiC6之間 ;
            (4)正極材料與Cu集流體之間。
            通過建立電池電化學有限元熱模型,對這4種短路情形下電池內部的放熱功率和電池溫度進行了系統的模擬與分析,并設計了相應的試驗來進行驗證。結果表明,Al集流體和充電石墨之間的短路是最危險的,因為這種情況下短路電阻小,電流大,熱功率高,熱量傳導、散熱比較慢,而且碳負極的活性高,所以容易造成后續一系列的電、化學反應,以致釀成事故 。
             
            三、結語
             
            通過對鋰離子電池負極材料、正極材料和電解液進行熱穩定性分析,總結了影響鋰離子電池熱穩定性的主要因素,對鋰離子電池在過充、外部高溫及短路等濫用時的火災危險性進行詳細分析,為鋰離子電池的安全使用提供了參考。當更多的人關注到鋰離子電池本身的材料危險性,同時加強對鋰離子電子生產、儲存和使用各環節的安全管理,鋰離子電池火災就會大大減少。

            新品展示查看更多
            品類推薦
            聚合物鋰電池鋰離子電池磷酸鐵鋰電池鎳氫電池鋰二氧化錳電池鋰亞硫酰氯電池圓柱形電池方形軟包電池超薄鋰電池異形電池方形電池組扣式電池聚合物鋰電池鋰離子電池磷酸鐵鋰電池鎳氫電池鋰二氧化錳電池鋰亞硫酰氯電池
            相關資訊最新資訊查看更多
            • 鋰電池中電極-電解質界面鈍化現象

              在鋰離子電池的前幾圈循環過程中,電解質會同時與負極、正極發生反應生成具有保護作用的鈍化層。此鈍化層的生成消耗了部分電解液,可以起到保護電極免受腐蝕性破壞的作用;同時,離子傳輸擴散通過這層膜的過...

              2024-11-15

            • 電池的回收再制造

              鋰離子電池和電池組包含很多種可回收材料,包括鋰、鈷、錳、鎳、銅、鋼和塑料等。然而目前并沒有鼓勵機制或一些規章制度驅動公司進行電池收回,而市場運營的話資金投入效益不佳。因此,許多電芯和電池組生產...

              2024-11-15

            • 電池組失效模式與影響分析

              電池組失效模式與影響分析FMEA是質量分析和可靠性分析都會用到的工具。FMEA是一個工具,它可以系統地分析產品和工藝過程中潛在的失效及其可能性評估其產生的危險,預測可能產生失效的區域以降低風險。當然這...

              2023-03-24

            • 鋰電池可靠性設計和維護設計

              可靠性設計和維護設計與其他的工程領域一樣,DFR和DFS(DesignforService,維護設計是非常重要的產品設計要素,這兩個要素在電子器件安全保障的設計初期就必須與鋰離子電池作為一個整體考慮。可靠性設計是一...

              2023-03-21

            • 鋰離子電池

              鋰離子電池基于德州大學奧斯汀分校JohnGoodenough教授的研究,索尼公司在1991年將鋰離子電池商業化。迄今為止,離子電池已經成為世界上產量最大的電池。在2013年,離子圓柱形電芯生產量約6.6億AH(安時),軟...

              2023-02-21

            • 鋰電池計算公式總結

              計算公式總結下面是本章所介紹公式的總結列表。基于這些公式,我們可以對設計電池進行基礎的理論計算,從而對儲能系統的性能有大致的了解。電壓V計算公式:V=I×RV=電流I計算公式:I=V/RI2=P/RI=P/V...

              2023-02-20

            • 電網用電池系統的計算

              電網用電池系統的計算上述相同的計算、公式和過程可用于評估和調整用于大型電網或固定系統的基于電池的能量存儲系統。大多數電池制造商面臨的挑戰是,從這些類型應用的信息需求的數量和水平通常比一個大型汽...

              2023-02-16

            • 將客戶需求轉換為電池組設計

              將客戶需求轉換為電池組設計經過上述講解,我們已經對各類公式進行了簡單的介紹。在鋰離子電池組裝工藝過程中,需要把這些公式放在一起使用。在此,我們簡單地論述消費者對電池的要求。客戶對電池的要求可以...

              2023-02-15

            • 計算鋰電池充電電壓

              計算鋰電池充電電壓最高充電電壓等于串聯的電芯的數目乘以每個電芯的最高充電電壓(由制造商規定的):96cellsx4.2Vmax=403V最高充電電壓最低放電電壓與此計算類似,串聯的電芯數目乘以電芯制作商規定的最低放...

              2023-02-15

            • 鋰電池功率與能量的比值

              鋰電池功率與能量的比值功率/能量比是許多客戶和系統設計者用來快速評估某種技術對其應用的適用性的一個快速數字(譯者注:即倍率,C-rate)。高功率應用,例如:12V啟/停型汽車電池,其比功率的數值(w/kg)通常...

              2023-02-14

            • 最大持續放電電流

              最大持續放電電流系統可以提供的最大持續放電電流的計算方法為:電芯并聯的數目(Np)乘以電流(Ic),然后再乘以最大倍率(CMax)。另外一種計算方法,是從制作商的數據清單里得到電芯的最大放電電流,然后再乘以...

              2023-02-13

            • 計算電池系統功率

              計算系統功率考慮到這些基本的計算,我們也可以深入挖掘并了解系統能提供多少能量。除了上面所示的基于歐姆定律的公式外,在計算中也可以使用這幾個公式來計算功率和使用功率(以瓦特計算)。在這種情況下,我...

              2023-02-10

            • 計算電池組壽命終端時的能量

              計算電池組壽命終端時的能量假設你可以使用100%的電池能量來達到這個范圍,實際上,你只能使用電池能量的80%~90%,這取決于電池的選擇和使用情況。這意味著25kWh必須是在該系統設計中可用的能量。換言之,...

              2023-02-09

            • 計算電池組的能量和容量

              計算電池組的能量和容量如何計算電池組的能量(E)。假設我們需要一個25kW的電池組,電池組能量與電池組的電壓(Vp)和容量(Ip)存在如下關系:Ep=Vp×Ip假設使用的3.7V的NMC電芯,共計96個,串聯后的電池...

              2023-02-08

            • 計算電池組所需的電池單體數量

              計算電池組所需的電池單體數量首先介紹電池組設計過程中如何計算需要多少個電芯以滿足所需要的電壓和電流。系統需要的電壓一般取決于系統的電動機。擁有電池組目標電壓,很容易計算出需要多少電芯才能滿足系...

              2023-02-07

            • 歐姆定律和基本的電池計算

              歐姆定律和基本的電池計算雖然電池組設計需要用到很多公式,但是歐姆定律是最重要、最基礎的公式。歐姆定律描述的是電壓、電流以及電阻三者之間的關系由于電壓和電流是電池中為數不多的可以測量的物理量(可...

              2023-02-07

            • 鋰聚合物電池壽命定義

              鋰聚合物電池壽命定義在環境溫度下,電池以0.2C充電,電池端電壓達到充電限制電壓時改為恒流充電,直到充電電流小于20mA時停止充電,擱置0.5-1,再去以0.2C電流放電至終止電壓.放電截止后,再擱置0.5~1H.再...

              2022-06-06

            • 鋰聚合物電池禁止事項注意

              鋰聚合物電池禁止事項:1.不可將電池置于火中。2.不可將電池充電器正負極反接。3.不可將電池短路(P+、P-)。4.避免電池過度沖擊和震蕩。5.不可拆解或扭曲電池。6.不可浸入水中。7.不可將該電池與其他種類和...

              2022-06-06

            • 冬季更容易出現電池失效的原因是什么?

              冬季更容易出現電池失效的原因是什么?冬季是車輛不易啟動的高發季節,尤其是在寒冷的早晨,更容易出現“趴窩”的現象。為什么到了早晨想要出門卻啟動不了車輛?最常見的原因就是蓄電池失效了。...

              2022-02-06

            • 科學家發明了可以用15年的廉價電池

              2022-02-06

            • 鋰聚合物電池鼓包脹氣的原因

              鋰聚合物電池鼓包脹氣的原因:聚合物鋰離子電池芯采用的是鋁塑複合膜的包裝技術,當電池芯內部由于異常化學反應的發生而產生氣體時,Pocket會被充起,電池芯鼓脹(有輕微鼓脹和嚴重鼓脹兩種情況),且不論外...

              2022-02-06

            • 計算電池組壽命終端時的能量

              計算電池組壽命終端時的能量假設你可以使用100%的電池能量來達到這個范圍,實際上,你只能使用電池能量的80%~90%,這取決于電池的選擇和使用情況。這意味著25kWh必須是在該系統設計中可用的能量。換言之,...

              2023-02-09

            • 計算電池組的能量和容量

              計算電池組的能量和容量如何計算電池組的能量(E)。假設我們需要一個25kW的電池組,電池組能量與電池組的電壓(Vp)和容量(Ip)存在如下關系:Ep=Vp×Ip假設使用的3.7V的NMC電芯,共計96個,串聯后的電池...

              2023-02-08

            • 計算電池組所需的電池單體數量

              計算電池組所需的電池單體數量首先介紹電池組設計過程中如何計算需要多少個電芯以滿足所需要的電壓和電流。系統需要的電壓一般取決于系統的電動機。擁有電池組目標電壓,很容易計算出需要多少電芯才能滿足系...

              2023-02-07

            • 冬季更容易出現電池失效的原因是什么?

              冬季更容易出現電池失效的原因是什么?冬季是車輛不易啟動的高發季節,尤其是在寒冷的早晨,更容易出現“趴窩”的現象。為什么到了早晨想要出門卻啟動不了車輛?最常見的原因就是蓄電池失效了。...

              2022-02-06

            • 科學家發明了可以用15年的廉價電池

              2022-02-06

            欧美永久免费高清在线网站_亚洲中文字幕精品久久_国产富婆一区二区三区午夜_国产一级黄片在线免费观看
              <source id="tk7cj"></source>

              <ins id="tk7cj"></ins><track id="tk7cj"></track>

              1. <i id="tk7cj"></i><b id="tk7cj"></b>
                1. <acronym id="tk7cj"></acronym>
                      亚洲国产综合性网站 | 日本女v片一区二区 | 在线国产亚洲91 | 中文字幕成人乱码视频在线 | 亚洲2020最新视频在线 | 亚洲A综合一区二区三区 |